Finite Math Examples

Graph y=(5 natural log of x+5)/(x^2)
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Find where the expression is undefined.
Step 1.2
Since as from the left and as from the right, then is a vertical asymptote.
Step 1.3
Since as from the left and as from the right, then is a vertical asymptote.
Step 1.4
List all of the vertical asymptotes:
Step 1.5
Ignoring the logarithm, consider the rational function where is the degree of the numerator and is the degree of the denominator.
1. If , then the x-axis, , is the horizontal asymptote.
2. If , then the horizontal asymptote is the line .
3. If , then there is no horizontal asymptote (there is an oblique asymptote).
Step 1.6
Find and .
Step 1.7
Since , the x-axis, , is the horizontal asymptote.
Step 1.8
No oblique asymptotes are present for logarithmic and trigonometric functions.
No Oblique Asymptotes
Step 1.9
This is the set of all asymptotes.
Vertical Asymptotes:
Horizontal Asymptotes:
Vertical Asymptotes:
Horizontal Asymptotes:
Step 2
Find the point at .
Tap for more steps...
Step 2.1
Replace the variable with in the expression.
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Simplify by moving inside the logarithm.
Step 2.2.2
One to any power is one.
Step 2.2.3
Simplify the numerator.
Tap for more steps...
Step 2.2.3.1
Add and .
Step 2.2.3.2
Raise to the power of .
Step 2.2.4
Divide by .
Step 2.2.5
The final answer is .
Step 2.3
Convert to decimal.
Step 3
Find the point at .
Tap for more steps...
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify by moving inside the logarithm.
Step 3.2.2
Raise to the power of .
Step 3.2.3
Simplify the numerator.
Tap for more steps...
Step 3.2.3.1
Add and .
Step 3.2.3.2
Raise to the power of .
Step 3.2.4
Rewrite as .
Step 3.2.5
Simplify by moving inside the logarithm.
Step 3.2.6
The final answer is .
Step 3.3
Convert to decimal.
Step 4
Find the point at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Simplify by moving inside the logarithm.
Step 4.2.2
Raise to the power of .
Step 4.2.3
Simplify the numerator.
Tap for more steps...
Step 4.2.3.1
Add and .
Step 4.2.3.2
Raise to the power of .
Step 4.2.4
Rewrite as .
Step 4.2.5
Expand by moving outside the logarithm.
Step 4.2.6
Cancel the common factor of and .
Tap for more steps...
Step 4.2.6.1
Factor out of .
Step 4.2.6.2
Cancel the common factors.
Tap for more steps...
Step 4.2.6.2.1
Factor out of .
Step 4.2.6.2.2
Cancel the common factor.
Step 4.2.6.2.3
Rewrite the expression.
Step 4.2.7
Simplify by moving inside the logarithm.
Step 4.2.8
Raise to the power of .
Step 4.2.9
Rewrite as .
Step 4.2.10
Simplify by moving inside the logarithm.
Step 4.2.11
The final answer is .
Step 4.3
Convert to decimal.
Step 5
The log function can be graphed using the vertical asymptote at and the points .
Vertical Asymptote:
Step 6