Enter a problem...
Finite Math Examples
y=5ln(x+5)x2y=5ln(x+5)x2
Step 1
Step 1.1
Find where the expression ln((x+5)5)x2ln((x+5)5)x2 is undefined.
x≤-5,x=0x≤−5,x=0
Step 1.2
Since ln((x+5)5)x2ln((x+5)5)x2→→∞∞ as xx→→-5−5 from the left and ln((x+5)5)x2ln((x+5)5)x2→→-∞−∞ as xx→→-5−5 from the right, then x=-5x=−5 is a vertical asymptote.
x=-5x=−5
Step 1.3
Since ln((x+5)5)x2ln((x+5)5)x2→→∞∞ as xx→→00 from the left and ln((x+5)5)x2ln((x+5)5)x2→→∞∞ as xx→→00 from the right, then x=0x=0 is a vertical asymptote.
x=0x=0
Step 1.4
List all of the vertical asymptotes:
x=-5,0x=−5,0
Step 1.5
Ignoring the logarithm, consider the rational function R(x)=axnbxmR(x)=axnbxm where nn is the degree of the numerator and mm is the degree of the denominator.
1. If n<mn<m, then the x-axis, y=0y=0, is the horizontal asymptote.
2. If n=mn=m, then the horizontal asymptote is the line y=aby=ab.
3. If n>mn>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 1.6
Find nn and mm.
n=0n=0
m=2m=2
Step 1.7
Since n<mn<m, the x-axis, y=0y=0, is the horizontal asymptote.
y=0y=0
Step 1.8
No oblique asymptotes are present for logarithmic and trigonometric functions.
No Oblique Asymptotes
Step 1.9
This is the set of all asymptotes.
Vertical Asymptotes: x=-5,0x=−5,0
Horizontal Asymptotes: y=0y=0
Vertical Asymptotes: x=-5,0x=−5,0
Horizontal Asymptotes: y=0y=0
Step 2
Step 2.1
Replace the variable xx with 11 in the expression.
f(1)=5ln((1)+5)(1)2f(1)=5ln((1)+5)(1)2
Step 2.2
Simplify the result.
Step 2.2.1
Simplify 5ln(1+5)5ln(1+5) by moving 55 inside the logarithm.
f(1)=ln((1+5)5)12f(1)=ln((1+5)5)12
Step 2.2.2
One to any power is one.
f(1)=ln((1+5)5)1f(1)=ln((1+5)5)1
Step 2.2.3
Simplify the numerator.
Step 2.2.3.1
Add 11 and 55.
f(1)=ln(65)1f(1)=ln(65)1
Step 2.2.3.2
Raise 66 to the power of 55.
f(1)=ln(7776)1f(1)=ln(7776)1
f(1)=ln(7776)1f(1)=ln(7776)1
Step 2.2.4
Divide ln(7776)ln(7776) by 11.
f(1)=ln(7776)f(1)=ln(7776)
Step 2.2.5
The final answer is ln(7776)ln(7776).
ln(7776)ln(7776)
ln(7776)ln(7776)
Step 2.3
Convert ln(7776)ln(7776) to decimal.
y=8.95879734y=8.95879734
y=8.95879734y=8.95879734
Step 3
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=5ln((2)+5)(2)2
Step 3.2
Simplify the result.
Step 3.2.1
Simplify 5ln(2+5) by moving 5 inside the logarithm.
f(2)=ln((2+5)5)22
Step 3.2.2
Raise 2 to the power of 2.
f(2)=ln((2+5)5)4
Step 3.2.3
Simplify the numerator.
Step 3.2.3.1
Add 2 and 5.
f(2)=ln(75)4
Step 3.2.3.2
Raise 7 to the power of 5.
f(2)=ln(16807)4
f(2)=ln(16807)4
Step 3.2.4
Rewrite ln(16807)4 as 14ln(16807).
f(2)=14⋅ln(16807)
Step 3.2.5
Simplify 14ln(16807) by moving 14 inside the logarithm.
f(2)=ln(1680714)
Step 3.2.6
The final answer is ln(1680714).
ln(1680714)
ln(1680714)
Step 3.3
Convert ln(1680714) to decimal.
y=2.43238768
y=2.43238768
Step 4
Step 4.1
Replace the variable x with 3 in the expression.
f(3)=5ln((3)+5)(3)2
Step 4.2
Simplify the result.
Step 4.2.1
Simplify 5ln(3+5) by moving 5 inside the logarithm.
f(3)=ln((3+5)5)32
Step 4.2.2
Raise 3 to the power of 2.
f(3)=ln((3+5)5)9
Step 4.2.3
Simplify the numerator.
Step 4.2.3.1
Add 3 and 5.
f(3)=ln(85)9
Step 4.2.3.2
Raise 8 to the power of 5.
f(3)=ln(32768)9
f(3)=ln(32768)9
Step 4.2.4
Rewrite ln(32768) as ln(215).
f(3)=ln(215)9
Step 4.2.5
Expand ln(215) by moving 15 outside the logarithm.
f(3)=15ln(2)9
Step 4.2.6
Cancel the common factor of 15 and 9.
Step 4.2.6.1
Factor 3 out of 15ln(2).
f(3)=3(5ln(2))9
Step 4.2.6.2
Cancel the common factors.
Step 4.2.6.2.1
Factor 3 out of 9.
f(3)=3(5ln(2))3(3)
Step 4.2.6.2.2
Cancel the common factor.
f(3)=3(5ln(2))3⋅3
Step 4.2.6.2.3
Rewrite the expression.
f(3)=5ln(2)3
f(3)=5ln(2)3
f(3)=5ln(2)3
Step 4.2.7
Simplify 5ln(2) by moving 5 inside the logarithm.
f(3)=ln(25)3
Step 4.2.8
Raise 2 to the power of 5.
f(3)=ln(32)3
Step 4.2.9
Rewrite ln(32)3 as 13ln(32).
f(3)=13⋅ln(32)
Step 4.2.10
Simplify 13ln(32) by moving 13 inside the logarithm.
f(3)=ln(3213)
Step 4.2.11
The final answer is ln(3213).
ln(3213)
ln(3213)
Step 4.3
Convert ln(3213) to decimal.
y=1.1552453
y=1.1552453
Step 5
The log function can be graphed using the vertical asymptote at x=-5,0 and the points (1,8.95879734),(2,2.43238768),(3,1.1552453).
Vertical Asymptote: x=-5,0
xy18.95922.43231.155
Step 6